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ABSTRACT

The flag-major index “fmaj” and the classical length function “ℓ” are used

to construct two q-analogs of the generating polynomial for the hyperoc-

tahedral group Bn by number of positive and negative fixed points (resp.,

pixed points). Specializations of those q-analogs are also derived dealing

with signed derangements and desarrangements, as well as several classical

results that were previously proved for the symmetric group.
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1. Introduction

The statistical study of the hyperoctahedral group Bn, initiated by Reiner

([Re93a], [Re93b], [Re93c], [Re95a] and [Re95b]), has been rejuvenated by Adin

and Roichman [AR01] with their introduction of the flag-major index, which

was shown [ABR01] to be equidistributed with the length function. See also

their recent papers on the subject [ABR05], [ReRo05]. It then appeared nat-

ural to extend the numerous results obtained for the symmetric group Sn to

the group Bn. Furthermore, flag-major index and length function become the

true q-analog makers needed for calculating various multivariable distributions

on Bn.

In the present paper we start with a generating polynomial for Bn by a

three-variable statistic involving the number of fixed points (see formula (1.3))

and show that there are two ways of q-analogizing it, by using the flag-major

index on the one hand, and the length function on the other hand. As will be

indicated, the introduction of an extra variable Z makes it possible to specialize

all our results to the symmetric group. Let us first give the necessary notation.

Let Bn be the hyperoctahedral group of all signed permutations of order

n. The elements of Bn may be viewed as words w = x1x2 · · ·xn, where each

xi belongs to {−n, . . . ,−1, 1, . . . , n} and |x1||x2| · · · |xn| is a permutation of

12 . . . n. The set (resp., the number) of negative letters among the xi’s

is denoted by Neg w (resp., neg w). A positive fixed point of the signed

permutation w = x1x2 · · ·xn is a (positive) integer i such that xi = i. It is

convenient to write i := −i for each integer i. Also, when A is a set of integers,

let A := {i : i ∈ A}. If xi = i with i positive, we say that i is a negative fixed

point of w. The set of all positive (resp., negative) fixed points of w is denoted

by Fix+ w (resp., Fix− w). Notice that Fix− w ⊂ Neg w. Also let

(1.1) fix+ w := #Fix+ w; fix− w := #Fix− w.

There are 2nn! signed permutations of order n. The symmetric group Sn may

be considered as the subset of all w from Bn such that Neg w = ∅.

The purpose of this paper is to provide two q-analogs for the polynomials

Bn(Y0, Y1, Z) defined by the identity

(1.2)
∑

n≥0

un

n!
Bn(Y0, Y1, Z) =

(

1 − u(1 + Z)
)−1

×
exp(u(Y0 + Y1Z))

exp(u(1 + Z))
.
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When Z = 0, the right-hand side becomes (1 − u)−1 exp(uY0)/ exp(u), which

is the exponential generating function for the generating polynomials for the

groups Sn by number of fixed points (see [Ri58, Chapter 4]). Also, by identifica-

tion, Bn(1, 1, 1) = 2nn! and it is easy to show (Theorem 1.1) that Bn(Y0, Y1, Z)

is, in fact, the generating polynomial for the group Bn by the three-variable

statistic (fix+, fix−, neg), that is,

(1.3) Bn(Y0, Y1, Z) =
∑

w∈Bn

Y fix+w
0 Y fix−w

1 Zneg w.

Recall the traditional notations for the q-ascending factorials

(1.4)

(a; q)n :=







1, if n = 0;

(1 − a)(1 − aq) · · · (1 − aqn−1), if n ≥ 1.

(a; q)∞ :=
∏

n≥1

(1 − aqn−1);

for the q-multinomial coefficients

(1.5)

[

n

m1, . . . , mk

]

q

:=
(q; q)n

(q; q)m1
· · · (q; q)mk

(m1 + · · · + mk = n);

and for the two q-exponentials (see [GaRa90, Chapter 1])

(1.6) eq(u) =
∑

n≥0

un

(q; q)n
=

1

(u; q)∞
; Eq(u) =

∑

n≥0

q(
n
2)un

(q; q)n
= (−u; q)∞.

Our two q-analogs, denoted by ℓBn(q, Y0, Y1, Z) and Bn(q, Y0, Y1, Z), are re-

spectively defined by the identities:

(1.7)
∑

n≥0

un

(−Zq; q)n (q; q)n

ℓBn(q, Y0, Y1, Z) =

(

1 −
u

1 − q

)−1

× (u; q)∞

(

∑

n≥0

(−qY −1
0 Y1Z; q)n (uY0)

n

(−Zq; q)n (q; q)n

)

;

(1.8)
∑

n≥0

un

(q2; q2)n
Bn(q, Y0, Y1, Z) =

(

1 − u
1 + qZ

1 − q2

)−1

×
(u; q2)∞

(uY0; q2)∞

(−uqY1Z; q2)∞
(−uqZ; q2)∞

.

Those two identities can be shown to yield (1.2) when q = 1.
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There is also a graded form of (1.8) in the sense that an extra variable t can

be added to form a new polynomial Bn(t, q, Y0, Y1, Z) with nonnegative integral

coefficients that specializes into Bn(q, Y0, Y1, Z) for t = 1. Those polynomials

are defined by the identity

(1.9)
∑

n≥0

(1 + t)Bn(t, q, Y0, Y1, Z)
un

(t2; q2)n+1
=

∑

s≥0

ts
(

1 − u

s
∑

i=0

qiZ
χ(i odd)

)−1

×
(u; q2)⌊s/2⌋+1

(uY0; q2)⌊s/2⌋+1

(−uqY1Z; q2)⌊(s+1)/2⌋

(−uqZ; q2)⌊(s+1)/2⌋
,

where for each statement A we let χ(A) = 1 or 0 depending on whether A is true

or not. The importance of identity (1.9) lies in its numerous specializations, as

can be seen in Figure 1.

Now that the two q-extensions ℓBn(q, Y0, Y1, Z) and Bn(t, q, Y0, Y1, Z) are

defined, the program is to derive appropriate combinatorial interpretations for

them. Before doing so, we need to have a second combinatorial interpretation

for the polynomial Bn(Y0, Y1, Z) besides the one mentioned in (1.3). Let w =

x1x2 · · ·xn be a word, all letters of which are integers without any repetitions.

Say that w is a desarrangement if x1 > x2 > · · · > x2k and x2k < x2k+1

for some k ≥ 1. By convention, xn+1 = ∞. We could also say that the

leftmost trough of w occurs at an even position. This notion was introduced

by Désarménien [De84] and elegantly used in a subsequent paper [DeWa88].

Notice that there is no one-letter desarrangement. By convention, the empty

word e is also a desarrangement.

Now let w = x1x2 · · ·xn be a signed permutation. Unless w is increasing,

there is always a nonempty right factor of w which is a desarrangement. Then,

it makes sense to define wd as the longest such a right factor. Hence, w admits

a unique factorization w = w−w+wd, called its pixed1 factorization, where

w− and w+ are both increasing, the letters of w− being negative, those of w+

positive and where wd is the longest right factor of w which is a desarrangement.

For example, the pixed factorizations of the following signed permutations

are materialized by vertical bars: w = 5 2 | e | 3 4 1; w = 5 | e | 2 3 1 4;

w = 53 2 | 1 4 | e; w = 53 | 1 | 4 2; w = 53 | e | 4 1 2.

1 “Pix,” of course, must not be taken here for the abbreviated form of “pictures.”
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Let w = w−w+wd be the pixed factorization of w = x1x2 · · ·xn. If

w− = x1 · · ·xk, w+ = xk+1 · · ·xk+l,

define Pix− w := {x1, . . . , xk}, Pix+ w := {xk+1, . . . , xk+l}, pix− w := #Pix− w,

pix+ w := #Pix+ w.

Theorem 1.1: The polynomial Bn(Y0, Y1, Z) defined by (1.2) admits the fol-

lowing two combinatorial interpretations:

Bn(Y0, Y1, Z) =
∑

w∈Bn

Y fix+ w
0 Y fix− w

1 Zneg w =
∑

w∈Bn

Y pix+ w
0 Y pix− w

1 Zneg w.

Theorem 1.1 is proved in Section 2. A bijection φ of Bn onto itself will be

constructed that satisfies (Fix−, Fix+, Neg)w = (Pix−, Pix+, Neg)φ(w).

Let “ℓ” be the length function of Bn (see [Bo68, p. 7], [Hu90, p. 12] or the

working definition given in (3.1)). As seen in Theorem 1.2, “ℓ” is to be added

to the three-variable statistic (pix+, pix−, neg) (and not to (fix+, fix−, neg)) for

deriving the combinatorial interpretation of ℓBn(q, Y0, Y1, Z). This theorem is

proved in Section 3.

Theorem 1.2: For each n ≥ 0 let ℓBn(q, Y0, Y1, Z) be the polynomial defined

in (1.7). Then

(1.10) ℓBn(q, Y0, Y1, Z) =
∑

w∈Bn

qℓ(w) Y pix+ w
0 Y pix− w

1 Zneg w.

The variables t and q which are added to interpret our second extension

Bn(t, q, Y0, Y1, Z) will carry the flag-descent number “fdes” and the flag-major

index “fmaj.” For each signed permutation w = x1x2 · · ·xn the usual number

of descents “des” is defined by des w :=
∑n−1

i=1 χ(xi > xi+1), the major index

“maj” by majw :=
∑n−1

i=1 i χ(xi > xi+1), the flag descent number “fdes” and

the flag-major index “fmaj” by

(1.11) fdes w := 2 desw + χ(x1 < 0); fmajw := 2 majw + neg w.

Theorem 1.3: For each n ≥ 0 let Bn(t, q, Y0, Y1, Z) be the polynomial defined

in (1.9). Then

(1.12) Bn(t, q, Y0, Y1, Z) =
∑

w∈Bn

tfdesw qfmaj w Y fix+ w
0 Y fix− w

1 Zneg w.

Theorem 1.3 is proved in Section 5 after discussing the combinatorics of the

so-called weighted signed permutations in Section 4. Section 6 deals with
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numerous specializations of Theorems 1.2 and 1.3 obtained by taking numerical

values, essentially 0 or 1, for certain variables. Those specializations are illus-

trated by Figure 1. When Z = 0, the statistic “neg” plays no role and the signed

permutations become plain permutations; the second column of the diagram is

then mapped on the third one that only involves generating polynomials for Sn

or subsets of that group.

DB
n

(fmaj,fix−,neg)
// DB

n (q, Y1, Z)

fdes

��

Dn(q)
negoo

fdes

��

Dn

majoo

DB
n (t, q, Y1, Z)

fix+

��

Dn(t, q)
negoo

fix+

��
Bn(t,q,Y0,Y1,Z) An(t, q, Y0)

negoo

Bn(q, Y0, Y1, Z)

fdes

OO

An(q, Y0)
negoo

des

OO

Bn

fix+,fix−,neg)

(pix+,pix−,neg)

// Bn(Y0,Y1,Z)

fmaj

OO

ℓ

��

An(Y0)
negoo

maj

OO

inv

��

Sn
fix+

pix+

oo

ℓBn(q,Y0,Y1,Z) invAn(q, Y0)
negoo

KB
n

(ℓ,pix−,neg)

// ℓKB
n (q, Y1, Z)

pix+

OO

invKn(q)
negoo

pix+

OO

Kn
inv

imaj
oo

Figure 1

The first (resp., fourth) column refers to specific subsets of Bn (resp., of Sn):

(1.13)

Dn := {w ∈ Bn : Fix+ w = Neg w = ∅};

Kn := {w ∈ Bn : Pix+ w = Neg w = ∅};

DB
n := {w ∈ Bn : Fix+ w = ∅};

KB
n := {w ∈ Bn : Pix+ w = ∅}.
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The elements of Dn are the classical derangements and provide the most

natural combinatorial interpretations of the derangement numbers dn = Dn

(see [Co70, pp. 9–12]). By analogy, the elements of DB
n are called signed

derangements. They have been studied by Chow [Ch06] in a recent note.

The elements of Kn (resp. of KB
n ) are called desarrangements (resp., signed

desarrangements) of order n. When Y0 = 0, the statistic fix+ (resp., pix+)

plays no role. We can then calculate generating functions for signed and for

plain derangements (resp., desarrangements), as shown in the first two rows

(resp., last row). The initial polynomial, together with its two q-analogs are

reproduced in boldface.

2. Proof of Theorem 1.1

As can be found in ([Co70, pp. 9–12]), the generating function for the derange-

ment numbers dn (n ≥ 0) is given by

(2.1)
∑

n≥0

dn
un

n!
= (1 − u)−1e−u.

An easy calculation then shows that the polynomials Bn(Y0, Y1, Z), introduced

in (1.2), can also be defined by the identity

(2.2) Bn(Y0, Y1, Z) =
∑

i+j+k+l=n

(

n

i, j, k, l

)

Y i
0 Y j

1 Zj+k dk+l (n ≥ 0).

For each signed permutation w = x1x2 · · ·xn let A := Fix+ w, B := Fix− w,

C := Neg w \ Fix− w, D := [n] \ (A ∪ B ∪ C). Then (A, B, C, D) is a sequence

of disjoint subsets of integers, whose union is the interval [n] := {1, 2, . . . , n}.

Also the mapping τ defined by τ(j) = xj if j ∈ C and τ(j) = xj if j ∈ D is

a derangement of the set C + D. Hence, w is completely characterized by

the sequence (A, B, C, D, τ). The generating polynomial for Bn by the statistic

(fix+, fix−, neg) is then equal to the right-hand side of (2.2). This proves the

first identity of Theorem 1.1.

Each signed permutation w = x1x2 · · ·xn can be characterized, either by the

four-term sequence (Fix+ w, Fix− w, Neg w, τ), as just described, or by (Pix+ w,

Pix− w, Neg w, wd), where wd is the desarrangement occurring as the third

factor in its pixed factorization. To construct a bijection φ of Bn onto Bn

such that (fix−, fix+, neg)w = (pix−, pix+, neg)φ(w) and accordingly prove the
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second identity of Theorem 1.1, we only need a bijection τ 7→ f(τ), that maps

each derangement τ onto a desarrangement f(τ) by rearranging the letters

of τ . But such a bijection already exists. It is due to Désarménien (op. cit.).

We describe it by means of an example.

Start with a derangement τ =
(

1 2 3 4 5 6 7 8 9
9 7 4 3 8 2 6 5 1

)

and express it as a product

of its disjoint cycles: τ = (19)(276)(34)(58). In each cycle, write the minimum

in the second position: τ = (91)(627)(43)(85). Then, reorder the cycles in such

a way that the sequence of those minima, when reading from left to right, is

decreasing: τ = (85)(43)(627)(91). The desarrangement f(τ) is derived from

the latter expression by removing the parentheses: f(τ) = 854362791.

Let (Fix+ w, Fix− w, Neg w, τ) be the sequence associated with the signed

permutation w and let v− (resp., v+) be the increasing sequence of the ele-

mentsof Fix− w (resp., of Fix+ w). Then, v− | v+ | f(τ) is the pixed factoriza-

tion of v−v+f(τ) and we may define φ(w) by

(2.3) φ(w) := v−v+f(τ).

This defines a bijection of Bn onto itself, which has the further property:

(2.4) (Fix−, Fix+, Neg)w = (Pix−, Pix+, Neg)φ(w).

For instance, with w =
(

1 2 3 4 5 6 7 8 9
3 2 8 4 5 1 9 6 7

)

we have v+ = 45, v− = 2, τ =
(

1 3 6 7 8 9
3 8 1 9 6 7

)

= (97)(8613) and f(τ) = 978613. Hence, the pixed factorization of

φ(w) reads 2 | 45 | 978613 and φ(w) = 245978613.

3. Proof of Theorem 1.2

The length function “ℓ” for Bn is expressed in many ways. We shall use the

following expression derived by Brenti [Br94]. Let w = x1x2 · · ·xn be a signed

permutation; its length ℓ(w) is defined by

(3.1) ℓ(w) := inv w +
∑

i

|xi|χ(xi < 0),

where “inv” designates the usual number of inversions for words:
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inv w :=
∑

1≤i<j≤n

χ(xi > xj).

The generating polynomial for Kn (as defined in (1.13)) by “inv” (resp., for Dn

by “maj”) is denoted byKn(q) := invKn(q) (resp., Dn(q)). As was proved in

[DeWa93] we have:

(3.2) Kn(q) = Dn(q).

Also

(3.3)
∑

n≥0

un

(q; q)n
Dn(q) =

(

1 −
u

1 − q

)−1

× (u; q)∞,

as shown by Wachs [Wa90] in an equivalent form. Another expression for Dn(q)

will be derived in Proposition 6.2.

If A is a finite set of positive integers, let totA denote the sum
∑

a (a ∈ A).

For the proof of Theorem 1.2 we make use of the following classical result,

namely, that qN(N+1)/2
[

n
N

]

q
is equal to the sum

∑

qtot A, where the sum is

over all subsets A of cardinality N of the set [n]. Remember that each signed

permutation w = x1x2 . . . xn is characterized by a sequence (A, B, C, D, τ),

where A = Pix+ w, B = Pix− w, C = Neg w \B, D = [n] \ (A∪B ∪C) and τ is

a desarrangement of the set C + D. Let inv(B, C) be the number of pairs of

integers (i, j) such that i ∈ B, j ∈ C and i > j. As inv(B, C) = inv(C, B), we

have inv w = inv(B, C) + inv(A, D) + #A × #C + inv τ . From (3.1) it follows

that

ℓ(w) = inv w +
∑

xi<0

|xi|

= inv w + totB + totC

= totB + totC + inv(C, B) + inv(A, D) + #A × #C + inv τ.

Denote the right-hand side of (1.10) by Gn := Gn(q, Y0, Y1, Z). We will calculate

Gn(q, Y0, Y1, Z) by first summing over all sequences (A, B, C, D, τ) such that

#A = i, #B = j, #C = k, #D = l. Accordingly, τ is a desarrangement of a
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set of cardinality k + l. We may write:

Gn =
∑

i+j+k+l=n

∑

(A,B,C,D)

qtot B+tot C+inv(C,B)+inv(A,D)+i·k

× Y i
0 Y j

1 Zj+k
∑

τ∈Kk+l

qinv τ

=
∑

m+p=n

∑

j+k=m
i+l=p

∑

#E=m
F=[n]\E

∑

C+B=E
A+D=F

qtot E+inv(C,B)+inv(A,D)+i·k

× Y i
0 (Y1Z)jZkDk+l(q)

=
∑

m+p=n

∑

j+k=m
i+l=p

Y i
0 (Y1Z)j(Zqi)kDk+l(q)

×
∑

#E=m
F=[n]\E

qtot E
∑

C+B=E,
A+D=F

qinv(C,B)+inv(A,D)

=
∑

m+p=n

∑

j+k=m
i+l=p

Y i
0 (Y1Z)j(Zqi)kDk+l(q)

× qm(m+1)/2

[

n

m

]

q

[

m

j, k

]

q

[

p

i, l

]

q

.

Thus

(3.4) Gn =
∑

i+j+k+l=n

[

n

i, j, k, l

]

q

q(
j+k+1

2 )Y i
0 (Y1Z)j(Zqi)kDk+l(q).

Now form the factorial generating function

G(q, Y0, Y1, Z; u) :=
∑

n≥0

un

(−Zq; q)n(q; q)n
Gn(q, Y0, Y1, Z).

It follows from (3.4) that

G(q, Y0, Y1, Z; u) =
∑

n≥0

1

(−Zq; q)n

∑

i+j+k+l=n

q(
j+k+1

2 ) (uY0)
i

(q; q)i

(uY1Z)j

(q; q)j

× un−i−j Dk+l(q)(Zqi)k

(q; q)k(q; q)l
.
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But
(

j+k+1
2

)

=
(

j+1
2

)

+ (j + 1)k +
(

k
2

)

. Hence

G(q, Y0, Y1, Z; u) =
∑

n≥0

1

(−Zq; q)n

n
∑

m=0

∑

i+j=m

q(
j+1

2 ) (uY0)
i

(q; q)i

(uY1Z)j

(q; q)j

×
un−m

(q; q)n−m
Dn−m(q)

∑

k+l=n−m

[

n − m

k, l

]

q

(Zqm+1)kq(
k
2).

Now

(−Zqm+1; q)n−m =
∑

k+l=n−m

[

n − m

k, l

]

q

(Zqm+1)kq(
k
2);

and

(−Zq; q)n = (−Zq; q)m(−Zqm+1; q)n−m.

Hence

G(q, Y0, Y1, Z; u) =
∑

n≥0

n
∑

m=0

1

(−Zq; q)m

∑

i+j=m

(uY0)
i

(q; q)i
q(

j+1

2 ) (uY1Z)j

(q; q)j

×
un−m

(q; q)n−m
Dn−m(q)

=

(

∑

n≥0

anun

(−Zq; q)n(q; q)n

)(

∑

n≥0

un

(q; q)n
Dn(q)

)

,

with

an =
∑

i+j=n

[

n

i, j

]

q

Y i
0 q(

j

2)(qY1Z)j = Y n
0

∑

i+j=n

[

n

i, j

]

q

(qY −1
0 Y1Z)jq(

j

2)

= Y n
0 (−qY −1

0 Y1Z; q)n.

By taking (3.3) into account this shows that G(q, Y0, Y1, Z; u) is equal to the

right-hand side of (1.7) and then Gn(q, Y0, Y1, Z) = ℓBn(q, Y0, Y1, Z) holds for

every n ≥ 0. The proof of Theorem 1.2 is completed. By (3.4) we also conclude

that the identity

(3.5) ℓBn(q, Y0, Y1, Z) =
∑

i+j+k+l=n

[

n

i, j, k, l

]

q

q(
j+k+1

2 )Y i
0 (Y1Z)j(Zqi)kDk+l(q)

is equivalent to (1.7). As its right-hand side tends to the right-hand side of (2.2)

when q → 1, we can then assert that (1.7) specializes into (1.2) for q = 1.
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4. Weighted signed permutations

We use the following notations: if c = c1c2 · · · cn is a word, whose letters are

nonnegative integers, let λ(c) := n be the length of c, tot c := c1 + c2 + · · ·+ cn

the sum of its letters and odd c the number of its odd letters. Furthermore,

NIWn (resp., NIWn(s)) designates the set of all nonincreasing words of length n,

whose letters are nonnegative integers (resp. nonnegative integers at most equal

to s). Also let NIWe
n(s) (resp., DWo

n(s)) be the subset of NIWn(s) of the

nonincreasing (resp., strictly decreasing) words all letters of which are even

(resp., odd).

Next, each pair
(

c
w

)

is called a weighted signed permutation of order n if

the four properties (wsp1)–(wsp4) hold:

(wsp1) c is a word c1c2 · · · cn from NIWn;

(wsp2) w is a signed permutation x1x2 · · ·xn from Bn;

(wsp3) ck = ck+1 ⇒ xk < xk+1 for all k = 1, 2, . . . , n − 1;

(wsp4) xk is positive (resp. negative) whenever ck is even (resp., odd).

When w has no fixed points, either negative or positive, we say that
(

c
w

)

is a weighted signed derangement. The set of weighted signed permuta-

tions (resp., derangements)
(

c
w

)

=
(

c1c2···cn

x1x2···xn

)

of order n is denoted by WSPn

(resp., by WSDn). The subset of all those weighted signed permutations (resp.

derangements) such thatc1 ≤ s is denoted by WSPn(s) (resp., by WSDn(s)).

For example, the following pair

(

c

w

)

=

(

10 10 9 7 7 7 4 4 4 3 2 2 1

1 2 7 6 5 4 3 8 9 10 12 13 11

)

is a weighted signed permutation of order 13. It has four positive fixed points

(1, 2, 8, 9) and two negative fixed points(5, 10).

Proposition 4.1: With each weighted signed permutation
(

c
w

)

from the set

WSPn(s) can be associated a unique sequence (i, j, k,
(

c′

w′

)

, ve, vo) such that

(1) i, j, k are nonnegative integers of sum n;

(2)
(

c′

w′

)

is a weighted signed derangement from the set WSDi(s);

(3) ve is a nonincreasing word with even letters from the set NIWe
j(s);

(4) vo is a decreasing word with odd letters from the set DWo
k(s);
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having the following properties:

tot c = tot c′ + tot ve + tot vo; neg w = neg w′ + λ(vo);(4.1)

fix+ w = λ(ve); fix− w = λ(vo).

The bijection
(

c
w

)

7→ (
(

c′

w′

)

, ve, vo) is quite natural to define. Only its reverse

requires some attention. To get the latter three-term sequence from
(

c
w

)

proceed

as follows:

(a) let l1,. . . , lα (resp., m1, . . . , mβ) be the increasing sequence of the

integers li (resp. mi) such that xli (resp., xmi
) is a positive (resp.,

negative) fixed point of w;

(b) define: ve := cl1 · · · clα and vo := cm1
· · · cmβ

;

(c) remove all the columns
(

cl1
xl1

)

, . . . ,
(

clα

xlα

)

,
(

cm1

xm1

)

, . . . ,
(

cmβ
xmβ

)

from
(

c
w

)

and

let c′ be the nonincreasing word derived from c after the removal;

(d) once the letters xl1 , . . . , xlα , xm1
, . . . , xmβ

have been removed from the

signed permutation w the remaining ones form a signed permutation of

a subset A of [n], of cardinality n−α− β. Using the unique increasing

bijection φ of A onto the interval [n − α − β] replace each remaining

letter xi by φ(xi) if xi > 0 or by −φ(−xi) if xi < 0. Let w′ be the

signed derangement of order n − α − β thereby obtained.

For instance, with the above weighted signed permutation we have: ve =

10, 10, 4, 4 and vo = 7, 3. After removing the fixed point columns we obtain:







3 4 6 7 11 12 13

9 7 7 4 2 2 1

7 6 4 3 12 13 11






and then

(

c′

w′

)

=







1 2 3 4 5 6 7

9 7 7 4 2 2 1

4 3 2 1 6 7 5






.

There is no difficulty verifying that the properties listed in (4.1) hold. For

reconstructing
(

c
w

)

from the sequence (
(

c′

w′

)

, ve, vo) consider the nonincreasing

rearrangement of the juxtaposition product vevo in the form bh1

1 · · · bhm
m , where

b1 > · · · > bm and hi ≥ 1 (resp., hi = 1) if bi is even (resp., odd). The pair
(

c′

w′

)

being decomposed into matrix blocks, as shown in the example, each letter bi

indicates where the hi fixed point columns are to be inserted. We do not give

more details and simply illustrate the construction with the running example.
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With the previous example bh1

1 · · · bhm
m = 102 7 42 3. First, implement 102:







1 2 3 4 5 6 7 8 9

10 10 9 7 7 4 2 2 1

1 2 6 5 4 3 8 9 7






;

then 7:






1 2 3 4 5 6 7 8 9 10

10 10 9 7 7 7 4 2 2 1

1 2 7 6 5 4 3 9 10 8






;

notice that because of condition (wsp3) the letter 7 is to be inserted in second

position in the third block; then insert 42:






1 2 3 4 5 6 7 8 9 10 11 12

10 10 9 7 7 7 4 4 4 2 2 1

1 2 7 6 5 4 3 8 9 11 12 10






.

The implementation of 3 gives back the original weighted signed permuta-

tion
(

c
w

)

.

5. Proof of Theorem 1.3

It is q-routine (see, e.g., [An76, chap. 3]) to prove the following identities,

where v1 is the first letter of v:

1

(u; q)N
=
∑

n≥0

[

N + n − 1

n

]

q

un;

[

N + n

n

]

q

=
∑

v∈NIWn(N)

qtot v;

1

(u; q)N+1
=
∑

n≥0

un
∑

v∈NIWn(N)

qtot v =
1

1 − u

∑

v∈NIWn

qtot vuv1 ;

1

(u; q2)⌊s/2⌋+1
=
∑

n≥0

un
∑

ve∈NIWe
n(s)

qtot ve

;(5.1)

(−uq; q2)⌊(s+1)/2⌋ =
∑

n≥0

un
∑

vo∈DWo
n(s)

qtot vo

.(5.2)

The last two formulas and Proposition 4.1 are now used to calculate the gen-

erating function for the weighted signed permutations. The symbols NIWe(s),

DWo(s), WSP(s),WSD(s) designate the unions for n ≥ 0 of the corresponding

symbols with an n-subscript.
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Proposition 5.2: The following identity holds:

(5.3)
∑

n≥0

un
∑

( c
w)∈WSPn(s)

qtot cY fix+ w
0 Y fix− w

1 Zneg w

=
(u; q2)⌊s/2⌋+1

(uY0; q2)⌊s/2⌋+1

(−uqY1Z; q2)⌊(s+1)/2⌋

(−uqZ; q2)⌊(s+1)/2⌋
×
∑

n≥0

un
∑

(c
w)∈WSPn(s)

qtot cZneg w.

Proof. First, summing over (we, wo,
(

c
w

)

) ∈ NIWe(s) × DWo(s) × WSP(s), we

have

(5.4)
∑

we,wo,(c

w)

uλ(we)qtot we

× (uZ)λ(wo)qtot wo

× uλ(c)qtot cY fix+ w
0 Y fix− w

1 Zneg w

=
(−uqZ; q2)⌊(s+1)/2⌋

(u; q2)⌊s/2⌋+1
×
∑

(c
w)

uλ(c)qtot cY fix+ w
0 Y fix− w

1 Zneg w

by (5.1) and (5.2). Now, Proposition 4.1 implies that the initial expression can

also be summed over five-term sequences (
(

c′

w′

)

, ve, vo, we, wo) from WSD(s) ×

NIWe(s) × DWo(s) × NIWe(s) × DWo(s) in the form

∑

(c′

w′),ve,vo,we,wo

uλ(c′)qtot c′Zneg w′

× (uY0)
λ(ve)qtot ve

× (uY1Z)λ(vo)qtot vo

× uλ(we)qtot we

× (uZ)λ(wo)qtot wo

=
∑

ve,vo

(uY0)
λ(ve)qtot ve

× (uY1Z)λ(vo)qtot vo

×
∑

(c′

w′),we,wo

uλ(c′)qtot c′Zneg w′

× uλ(we)qtot we

× (uZ)λ(wo)qtot wo

.

The first summation can be evaluated by (5.1) and (5.2), while by Proposition

4.1 again the second sum can be expressed as a sum over weighted signed

permutations
(

c
w

)

∈ WSP(s). Therefore, the initial sum is also equal to

(5.5)
(−uqY1Z; q2)⌊(s+1)/2⌋

(uY0; q2)⌊s/2⌋+1
×

∑

(c
w)∈WSP(s)

uλ(c)qtot cZneg w.

Identity (5.3) follows by equating (5.4) with (5.5).
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Proposition 5.3: The following identity holds:

(5.6)
∑

n≥0

un
∑

( c
w)∈WSPn(s)

qtot cZneg w =

(

1 − u

s
∑

i=0

qiZ
χ(i odd)

)−1

.

Proof. For proving the equivalent identity

(5.7)
∑

( c
w)∈WSPn(s)

qtot cZneg w =

( s
∑

i=0

qiZ
χ(i odd)

)n

(n ≥ 0)

it suffices to construct a bijection
(

c
w

)

7→ d of WSPn(s) onto {0, 1, . . . , s}n

such that tot c = tot d and neg w = odd d. This bijection is one of the main

ingredients of the MacMahon Verfahren for signed permutations that has

been fully described in [FoHa05, §4]. We simply recall the construction of the

bijection by means of an example. Start with
(

c
w

)

=
(

10 9 7 4 4 2 2 1 1
1 4 3 2 5 6 8 9 7

)

. Then,

form the two-matrix
(

10 9 7 4 4 2 2 1 1
1 4 3 2 5 6 8 9 7

)

, where the negative integers on the

bottom row have been replaced by their opposite values. Next, rearrange its

columns in such a way that the bottom row is precisely 12 . . . n. The word d is

defined to be the top row in the resulting matrix. Here
(

d
Id

)

=
(

10 4 7 9 4 2 1 2 1
1 2 3 4 5 6 7 8 9

)

.

As d is a rearrangement of c, we have tot c = tot d and neg w = odd d. For

reconstructing the pair
(

c
w

)

from d = d1d2 · · · dn simply make a full use of

condition (wsp3).

Using the properties of this bijection we have:

∑

(c
w)∈WSPn(s)

qtot cZneg w =
∑

d∈{0,1,...,s}n

qtot dZoddd =
∑

d∈{0,1,...,s}n

n
∏

i=1

qdiZ
χ(di odd)

=

n
∏

i=1

∑

di∈{0,1,...,s}

qdiZχ(di odd)

=

( s
∑

i=0

qiZ
χ(i odd)

)n

.

Proposition 5.4: Let Gn := Gn(t, q, Y0, Y1, Z) denote the right-hand side of

(1.12) in the statement of Theorem 1.3. Then

(5.8)
1 + t

(t2; q2)n+1
Gn =

∑

s≥0

ts
∑

( c
w)∈WSPn(s)

qtot cY fix+ w
0 Y fix− w

1 Zneg w.
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Proof. A very similar calculation has been made in the proof of Theorem 4.1 in

[FoHa05]. We also make use of the identities on the q-ascending factorials that

were recalled in the beginning of this section. First,

1 + t

(t2; q2)n+1
=
∑

r′≥0

(t2r′

+ t2r′+1)

[

n + r′

r′

]

q2

=
∑

r≥0

tr
[

n + ⌊r/2⌋

⌊r/2⌋

]

q2

=
∑

r≥0

tr
∑

b∈NIWn(⌊r/2⌋)

q2 tot b.

Then,

1 + t

(t2; q2)n+1
Gn =

∑

r≥0

tr
∑

b∈NIWn,
2b1≤r

q2 tot b
∑

w∈Bn

tfdes wqfmaj wY fix+ w
0 Y fix− w

1 Zneg w

=
∑

s≥0

ts
∑

b∈NIWn,w∈Bn
2b1+fdes w≤s

q2 tot b+fmaj wY fix+ w
0 Y fix− w

1 Zneg w.

As proved in [FoHa05, §4] to each
(

c
w

)

=
(

c1···cn

x1···xn

)

∈ WSPn(s) there corresponds

a unique b = b1 · · · bn ∈ NIWn such that 2b1+fdes w = c1 and 2 tot b+fmajw =

tot c. Moreover, the mapping
(

c
w

)

7→ (b, w) is a bijection of WSPn(s) onto the set

of all pairs (b, w) such that b = b1 · · · bn ∈ NIWn and w ∈ Bn with the property

that 2b1 + fdes w ≤ s. The word b is determined as follows: write the signed

permutation w as a linear word w = x1x2 . . . xn and for each k = 1, 2, . . . , n let

zk be the number of descents (xi > xi+1) in the right factor xkxk+1 · · ·xn and

let ǫk be equal to 0 or 1 depending on whether xk is positive or negative. Also

for each k = 1, 2, . . . , n define ak := (ck − ǫk)/2, bk := (ak − zk) and form the

word b = b1 · · · bn. For example,

Id = 1 2 3 4 5 6 7 8 9 10

c = 9 7 7 4 4 4 2 2 1 1

w = 4 3 2 1 5 6 8 9 10 7

z = 1 1 1 1 1 1 1 1 0 0

ǫ = 1 1 1 0 0 0 0 0 1 1

a = 4 3 3 2 2 2 1 1 0 0

b = 3 2 2 1 1 1 0 0 0 0

Pursuing the above calculation we get (5.8).
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We can complete the proof of Theorem 1.3:

∑

n≥0

(1+t)Gn(t, q, Y0, Y1, Z)
un

(t2; q2)n+1

=
∑

s≥0

ts
∑

n≥0

un
∑

( c
w)∈WSPn(s)

qtot cY fix+ w
0 Y fix− w

1 Zneg w [by (5.8)]

=
∑

s≥0

ts
(u; q2)⌊s/2⌋+1

(uY0; q2)⌊s/2⌋+1

(−uqY1Z; q2)⌊(s+1)/2⌋

(−uqZ; q2)⌊(s+1)/2⌋

×
∑

n≥0

un
∑

(c

w)∈WSPn(s)

qtot cZneg w [by (5.3)]

=
∑

s≥0

ts
(

1 − u
s
∑

i=0

qiZ
χ(i odd)

)−1

×
(u; q2)⌊s/2⌋+1

(uY0; q2)⌊s/2⌋+1

(−uqY1Z; q2)⌊(s+1)/2⌋

(−uqZ; q2)⌊(s+1)/2⌋
[by (5.6)].

Hence, Gn(t, q, Y0, Y1, Z) = Bn(t, q, Y0, Y1, Z) for all n ≥ 0.

6. Specializations

For deriving the specializations of the polynomials ℓBn(q, Y0, Y1, Z) and

Bn(t, q, Y0, Y1, Z) with their combinatorial interpretations we refer to the

diagram displayed in Figure 1. Those two polynomials are now regarded as

generating polynomials for Bn by the multivariable statistics (ℓ, pix+, pix−, neg)

and (fdes, fmaj, fix+, fix−, neg), their factorial generating functions being given

by (1.7) and (1.9), respectively.

First, identity (1.8) is deduced from (1.9) by the traditional token that

consists of multiplying (1.9) by (1 − t) and making t = 1. Accordingly,

Bn(q, Y0, Y1, Z) occurring in (1.8) is the generating polynomial for the group Bn

by the statistic (fmaj, fix+, fix−, neg).

Now, let

(6.1) B(q, Y0, Y1, Z; u) :=
∑

n≥0

un

(q2; q2)n
Bn(q, Y0, Y1, Z).
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The involution of Bn defined by w = x1x2 · · ·xn 7→ w := x1x2 · · ·xn has the

following properties:

fmajw + fmajw = n2; neg w + neg w = n;(6.2)

fix+ w = fix− w; fix− w = fix+ w.(6.3)

Consequently, the duality between positive and negative fixed points must be

reflected in the expression of B(q, Y0, Y1, Z; u) itself, as shown next.

Proposition 6.1: We have:

(6.4) B(q, Y0, Y1, Z; u) = B(q−1, Y1, Y0, Z
−1;−uq−1Z).

Proof. The combinatorial proof consists of using the relations written in (6.2),

(6.3) and easily derive the identity

(6.5) Bn(q, Y0, Y1, Z) = qn2

ZnBn(q−1, Y1, Y0, Z
−1).

With this new expression for the generating polynomial identity (6.1) becomes

B(q, Y0, Y1, Z; u) =
∑

n≥0

(−uq−1Z)n

(q−2; q−2)n
Bn(q−1, Y1, Y0, Z

−1),

which implies (6.4). The analytical proof consists of showing that the righthand

side of identity (1.8) is invariant under the transformation

(q, Y0, Y1, Z, u) 7→ (q−1, Y1, Y0, Z
−1,−uq−1Z).

The factor 1− u(1 + qZ)/(1− q2) is clearly invariant. As for the other two fac-

tors it suffices to expand them by means of the q-binomial theorem ([GaRa90],

p. 7) and observe that they are simply permuted when the transformation is

applied.

The polynomial DB
n (t, q, Y1, Z) := Bn(t, q, 0, Y1, Z) (resp., DB

n (q, Y1, Z)

:= Bn(q, 0, Y1, Z)) is the generating polynomial for the set DB
n of the signed

derangements by the statistic (fdes, fmaj, fix−, neg) (resp., (fmaj, fix−, neg)).

Their factorial generating functions are obtained by letting Y0 = 0 in (1.9) and

(1.8), respectively.

Let Y0 = 0, Y1 = 1 in (1.8). We then obtain the factorial generating function

for the polynomials DB
n (q, Z) :=

∑

qfmajwZneg w (w ∈ DB
n ) in the form

(6.6)
∑

n≥0

un

(q2; q2)n
DB

n (q, Z) =
(

1 − u
1 + qZ

1 − q2

)−1

× (u; q2)∞.
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It is worth writing the equivalent forms of that identity:

(q2; q2)n

(1 − q2)n
(1 + qZ)n =

n
∑

k=0

[

n

k

]

q2

DB
k (q, Z) (n ≥ 0);(6.7)

DB
n (q, Z) =

n
∑

k=0

[

n

k

]

q2

(−1)kqk(k−1) (q2; q2)n−k

(1 − q2)n−k
(1 + qZ)n−k (n ≥ 0);(6.8)

DB
0 (q, Z) = 1, and for n ≥ 0(6.9)

DB
n+1(q, Z) = (1 + qZ)

1 − q2n+2

1 − q2
DB

n (q, Z) + (−1)n+1qn(n+1).

DB
0 (q, Z) = 1, DB

1 (q, Z) = Zq, and for n ≥ 1(6.10)

DB
n+1(q, Z) =

(1 − q2n

1 − q2
+ qZ

1 − q2n+2

1 − q2

)

DB
n (q, Z)

+ (1 + qZ)q2n 1 − q2n

1 − q2
DB

n−1(q, Z).

Note that (6.8) is derived from (6.6) by taking the coefficients of un on both

sides. Next, multiply both sides of (6.6) by the second q2-exponential Eq2 (−u)

and look for the coefficients of un on both sides. This yields (6.7). Now, write

(6.6) in the form

(6.11) Eq2 (−u) =
(

1 − u
1 + qZ

1 − q2

)

∑

n≥0

un

(q2; q2)n
DB

n (q, Z)

and take the coefficients of un on both sides. This yields (6.9). Finally, (6.10)

is a simple consequence of (6.9).

When Z = 1, formulas (6.6), (6.8), (6.9) have been proved by Chow [Ch06]

with DB
n (q) =

∑

w qfmaj w (w ∈ DB
n ). Now the polynomial KB

n (q, Y1, Z) :=
ℓBn(q, 0, Y1, Z) is the generating polynomial for the set KB

n of the signed de-

sarrangements by the statistic (ℓ, pix−, neg). From (1.7) we get

(6.12)
∑

n≥0

un

(−Zq; q)n(q; q)n
KB

n (q, Y1, Z) =

(

1 −
u

1 − q

)−1

× (u; q)∞

(

∑

n≥0

q(
n+1

2 )(Y1Zu)n

(−Zq; q)n(q; q)n

)

.

When the variable Z is given the zero value, the polynomials in the second

column of Fig. 1 are mapped on generating polynomials for the symmet-

ric group, listed in the third column. Also the variable Y1 vanishes. Let
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An(t, q, Y0) := Bn(t1/2, q1/2, Y0, 0, 0). Then

(6.13) An(t, q, Y0) =
∑

σ∈Sn

tdes σqmaj σY fixσ
0 (fix := fix+).

Identity (1.9) specializes into

(6.14)
∑

n≥0

An(t, q, Y0)
un

(t; q)n+1
=
∑

s≥0

ts
(

1 − u
s
∑

i=0

qi

)−1
(u; q)s+1

(uY0; q)s+1
,

an identity derived by Gessel and Reutenauer ([GeRe93, Theorem 8.4]) by

means of a quasi-symmetric function technique. Note that they wrote their

formula for “1 + des” and not for “des”.

Multiply (6.14) by (1 − t) and let t := 1, or let Z := 0 and q2 be replaced

by q in (1.8). Also, let An(q, Y0) :=
∑

σ qmaj σY fix σ (σ ∈ Sn); we get

(6.15)
∑

n≥0

un

(q; q)n
An(q, Y0) =

(

1 −
u

1 − q

)−1 (u; q)∞
(uY0; q)∞

,

an identity derived by Gessel and Reutenauer [GeRe93] and also by Clarke et

al. [ClHaZe97] by means of a q-Seidel matrix approach.

We do not write the specialization of (6.14) when Y0 := 0 to obtain the

generating function for the polynomials Dn(t, q) :=
∑

σ∈Dn
tdesσqmaj σ. As for

the polynomial Dn(q) :=
∑

σ∈Dn
qmaj σ, it has several analytical expressions,

which can all be derived from (6.7)–(6.10) by letting Z := 0 and q2 being

replaced by q. We only write the identity which corresponds to (6.7)

(6.16) D0(q) = 1 and
(q; q)n

(1 − q)n
=

n
∑

k=0

[

n

k

]

q

Dk(q) for n ≥ 1,

which is then equivalent to the identity

(6.17) eq(u)
∑

n≥0

un

(q; q)n
Dn(q) =

(

1 −
u

1 − q

)−1

.

The specialization of (6.8) for Z := 0 and q2 replaced by q was originally

proved by Wachs [Wa98] and again recently by Chen and Xu [ChXu06]. Those

two authors make use of the now classical MacMahon Verfahren, that has been

exploited in several papers and further extended to the case of signed permuta-

tion, as described in our previous paper [FoHa05].

In the next proposition we show that Dn(q) can be expressed as a polyno-

mial in q with positive integral coefficients. In the same manner, the usual

derangement number dn is an explicit sum of positive integers. To the best of
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the authors’ knowledge those formulas have not appeared elsewhere. In (6.19)

we make use of the traditional notation for the ascending factorial: (a)n = 1

if n = 0 and (a)n = a(a + 1) · · · (a + n − 1) if n ≥ 1.

Proposition 6.2: The following expressions hold:

Dn(q) =
∑

2≤2k≤n−1

1 − q2k

1 − q

(q2k+2; q)n−2k−1

(1 − q)n−2k−1
q(

2k

2 ) + q(
n

2)χ(n even),(6.18)

dn =
∑

2≤2k≤n−1

(2k)(2k + 2)n−2k−1 + χ(n even).(6.19)

Proof. When q = 1, then (6.18) is transformed into (6.19). As for (6.18), an

easy q-calculation shows that its righthand side satisfies (6.9) when Z = 0 and

q replaced by q1/2. As shown by Fu [Fu06], identity (6.18) can also be directly

derived from (6.17) by a simple q-calculation.

Now, let invAn(q, Y0) := ℓBn(q, Y0, 0, 0).Then

(6.20) invAn(q, Y0) =
∑

σ∈Sn

qinv σY pix σ
0 (pix := pix+).

Formula (1.7) specializes into

(6.21)
∑

n≥0

un

(q; q)n

invAn(q, Y0) =
(

1 −
u

1 − q

)−1 (u; q)∞
(uY0; q)∞

;

In view of (6.15) we conclude that

(6.22) An(q, Y0) = invAn(q, Y0).

For each permutation σ = σ(1) · · ·σ(n) let the ligne of route of σ be de-

fined by Ligne σ := {i : σ(i) > σ(i + 1)} and the inverse ligne of route by

Iligne σ := Ligneσ−1. Notice that majσ =
∑

i iχ(i ∈ Ligneσ); we also let

imajσ :=
∑

i iχ(i ∈ Iligne σ). Furthermore, let i : σ 7→ σ−1. If Φ designates

the second fundamental transformation described in [Fo68], [FoSc78], it is

known that the bijection Ψ := iΦi of Sn onto itself has the following property:

(Ligne, imaj)σ = (Ligne, inv)Ψ(σ). Hence

(6.23) (pix, imaj)σ = (pix, inv)Ψ(σ)

and then An(q, Y0) has the other interpretation:

(6.24) An(q, Y0) =
∑

σ∈Sn

qimaj σY pix σ
0 .
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Finally, let Kn(q) :=
∑

σ∈Kn
qinv σ. Then, with Y0 := 0 in (6.22) we have:

(6.25) Kn(q) = invAn(q, 0) = An(q, 0) = Dn(q).

However, it can be shown directly that Kn(q) is equal to the right-hand side

of (6.18), because the sum occurring in (6.18) reflects the geometry of the de-

sarrangements. The running term is nothing but the generating polynomial for

the desarrangements of order n whose leftmost trough is at position 2k by the

number of inversions “inv”. The bijection Ψ also sends Kn onto itself, so that

(6.26)
∑

σ∈Kn

qinv σ =
∑

σ∈Kn

qimaj σ,

a result obtained in this way by Désarménienand Wachs [DeWa90, 93], who also

proved that for every subset E ⊂ [n − 1] we have

(6.27) #{σ ∈ Dn : Ligneσ = E} = #{σ ∈ Kn : Iligne σ = E}.
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